在本文中,我将考虑一系列问题,最后关于我们科学和数学的认知局限性的广度和深度。然后,我将提出一种规避此类限制的可能方法。我首先考虑有关智力生物学功能的问题。这将导致有关人类语言的问题,也许是我们有史以来最重要的认知假体。虽然传统上对人类语言提供的感知能力进行了狂欢,但我将强调这是多么局限性(因此受到限制)。这将导致有关人类数学以我们的语言如此深入的疑问,这也受到了深厚的限制。然后,我将所有这些结合在一起,侧向回答本文的指导问题:我们对我们甚至无法想象的一切都能辨别什么?
translated by 谷歌翻译
历史流程表现出显着的多样性。尽管如此,学者们长期以来一直试图识别模式,并将历史行动者分类和对一些成功的影响。随机过程框架提供了一种结构化方法,用于分析大型历史数据集,允许检测有时令人惊讶的模式,鉴定内源性和外源对过程的相关因果作用者,以及不同历史案例的比较。随机过程的数据,分析工具和组织理论框架的组合使历史和考古中的传统叙事方法补充了传统的叙事方法。
translated by 谷歌翻译
G. Schurz的最新书籍表示,不用午餐定理(NFL)对(Meta)归纳的问题具有重大影响。在这里,我在这里审查了NFL定理,强调它们不仅关注先前有统一的情况 - 他们证明了“许多先验”(宽松地说)任何感应算法$ a $ notemeralized oteralized oteralized感应算法$ b $,反之亦然。但是,重要的是,除了NFL定理外,还有许多{免费午餐}定理。特别是,NFL定理只能用于比较感应算法$ a $的{边际}预期性能与感应算法$ b $的边际预期性能。有一系列免费的午餐,而是涉及归纳算法的概括错误之间的统计相关性。正如我所描述的那样,舒尔茨主张作为“解决休ume问题的解决方案”的元诱导算法只是基于归纳算法的概括错误之间的相关性的免费午餐的一个例子。我最终指出的是,舒尔茨提倡的先验是在位频率而不是位模式的统一的,这与统计物理学的数千个实验以及在归纳推理中最大熵程序的巨大成功相抵触。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
我们提供了奖励黑客的第一个正式定义,即优化不完美的代理奖励功能的现象,$ \ Mathcal {\ tilde {r}} $,根据真实的奖励功能,$ \ MATHCAL {R} $导致性能差。 。我们说,如果增加预期的代理回报率永远无法减少预期的真实回报,则代理是不可接受的。直觉上,可以通过从奖励功能(使其“较窄”)中留出一些术语或忽略大致等效的结果之间的细粒度区分来创建一个不可接受的代理,但是我们表明情况通常不是这样。一个关键的见解是,奖励的线性性(在州行动访问计数中)使得无法实现的状况非常强烈。特别是,对于所有随机策略的集合,只有在其中一个是恒定的,只有两个奖励函数才能是不可接受的。因此,我们将注意力转移到确定性的政策和有限的随机政策集中,在这些策略中,始终存在非平凡的不可动摇的对,并为简化的存在建立必要和充分的条件,这是一个重要的不被限制的特殊情况。我们的结果揭示了使用奖励函数指定狭窄任务和对齐人类价值的AI系统之间的紧张关系。
translated by 谷歌翻译
人类行为的不确定性对拥挤的城市环境中的自动驾驶构成了重大挑战。部分可观察到的马尔可夫决策过程(POMDP)为不确定性下的计划提供了一个原则的框架,通常利用蒙特卡洛抽样来实现在线绩效进行复杂的任务。但是,抽样还通过潜在缺失关键事件引起了安全问题。为了解决这个问题,我们提出了一种新的算法,学习对驾驶行为(领导者)的关注,这些算法在计划过程中学习了批判性人类行为。领导者学习了一个神经网络生成器,以实时情况下对人类行为的关注。它将注意力集成到信仰空间计划者中,使用重要性抽样来偏向关键事件。为了训练该算法,我们让注意力生成器和计划者组成了最小游戏。通过解决Min-Max游戏,领导者学会了无需人类标签即可执行风险意识的计划。
translated by 谷歌翻译
神经网络修剪可以有效地用于压缩自动语音识别(ASR)模型。但是,在多语言ASR中,执行语言不足的修剪可能会导致某些语言的严重性能降解,因为语言 - 敏捷的修剪口罩可能不符合所有语言,并丢弃了重要的语言特定参数。在这项工作中,我们提出了ASR路径,这是一种稀疏的多语言ASR模型,该模型激活了特定语言的子网络(“路径”),从而明确地学习了每种语言的参数。通过重叠的子网络,共享参数还可以通过联合多语言培训来实现较低资源语言的知识传输。我们提出了一种新型算法来学习ASR途径,并通过流式RNN-T模型评估了4种语言的建议方法。我们提出的ASR途径的表现都优于密集模型(平均-5.0%)和语言不足的修剪模型(平均-21.4%),并且与单语稀疏模型相比,低资源语言的性能更好。
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译
骨肉瘤是最常见的原发性骨癌,其标准治疗包括术前化疗,然后切除。化学疗法反应用于预测患者的预后和进一步治疗。坏死在切除标本上的组织学幻灯片通常评估了坏死比定义为坏死肿瘤与总体肿瘤之比。已知坏死比> = 90%的患者的预后更好。多个载玻片对坏死比的手动微观综述是半定量性的,并且可能具有观察者间和观察者间的变异性。我们提出了一种基于目标和可再现的深度学习方法,以估计坏死比,并从扫描的苏木精和曙红全幻灯片图像预测结果。我们以3134个WSI的速度收集了103例骨肉瘤病例,以训练我们的深度学习模型,验证坏死比评估并评估结果预测。我们训练了深层多磁化网络,以分割多个组织亚型,包括生存的肿瘤和像素级中的坏死肿瘤,并计算来自多个WSI的病例级坏死比。我们显示了通过分割模型估算的坏死比,高度与由专家手动评估的病理报告中的坏死比高度相关,其中IV级的平均绝对差异(100%),III(> = 90%)和II(> = 50%和<50%和< 90%)坏死反应分别为4.4%,4.5%和17.8%。我们成功地对患者进行了分层,以预测P = 10^-6的总生存率,而P = 0.012的无进展生存率。我们没有可变性的可重现方法使我们能够调整截止阈值,特别是用于模型和数据集的截止阈值,为OS的80%,PFS为60%。我们的研究表明,深度学习可以支持病理学家作为一种客观的工具,可以分析组织学中骨肉瘤,以评估治疗反应并预测患者结果。
translated by 谷歌翻译